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In this paper we investigate the effect of a weak vertical magnetic field on the 
boundary-layer flow of an electrically conducting fluid past a vertical heated wall. 
We derive similarity solutions for the flow and temperature and show that the flow 
is composed of three regions : an inner region where the flow is a regular perturbation 
of the classical boundary-layer flow due to a heated semi-infinite vertical plate; an 
inviscid outer region where fluid is entrained from downwards towards the plate ; and 
beyond this a quiescent region, separated from the outer region by a free shear layer. 
Thus the effect of the magnetic field is to inhibit the entrainment of fluid across the 
magnetic field lines in the whole region and confine it to an outer boundary layer. 

1. Introduction 
In this paper we consider the effect of a constant magnetic field parallel to a heated 

vertical wall. The initial motivation for this work was an investigation of the effect 
of an axial magnetic field on the crucible wall boundary layers that occur in the 
magnetic Czochralski crystal growth technique. An analysis of this situation has 
already been conducted by Hjellming & Walker (1987) but in the limit of large 
magnetic interaction number, in which case the nonlinear inertia terms may be 
neglected. Such a large value of the magnetic interaction number is not always 
obtained in practice. The approach adopted here is to consider the situation when the 
magnetic field is weak; however the equations are fully nonlinear and we have to 
make several simplifying assumptions in order to make progress. As we are 
principally concerned with the effect of the magnetic field on the buoyancy-driven 
flows in the crucible we focus our attention on the more fundamental problem of the 
flow past a heated vertical flat wall in the presence of a uniform vertical magnetic 
field. 

The heated vertical flat plate with a uniform far-field temperature in the absence 
of a magnetic field was first considered by Pohlhausen (1921) who developed the 
classical similarity solution to the boundary-layer equations. There have been 
various extensions of this work to include magnetohydrodynamic effects. It has been 
extended to include a transverse magnetic field by, for example, Sparrow & Cess 
(1961) and Lykoudis (1962). The latter considers a uniform field, whereas the former 
deals with the case of a field with variation of x-i, where x is the distance along the 
plate. Wilks (1976) provided a numerical solution in the case when the horizontal 
magnetic field is uniform. Gray (1977) investigated the effect of a transverse field on 
a plume above a heated line source. Other theoretical work which considers a vertical 
magnetic field is limited to Soward (1969) who is concerned with the interaction of 
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the field with a rising plume above a point or line heat source. Another example 
where the magnetic field is almost parallel to  the predominant direction of the flow 
was studied by Riley (1976), who considered the case of a parallel magnetic field on 
the Blasius boundary layer. 

The situation that we consider here, of a heated vertical plate in the presence of 
a parallel vertical magnetic field, has not received attention although experiments on 
the effect of a vertical magnetic field on the flow in a rectangular container with a 
heated sidewall have been carried out by Seki, Kawamura & Sanokawa (1979) who 
also conducted some numerical calculations. A reason why this problem has not been 
considered may well be because a superficial consideration of this situation would 
indicate that the flow in the boundary layer, which is almost parallel to the magnetic 
field, would therefore be virtually unaffected by the Lorenz force. Here we analyse 
this situation for a small magnetic field using similarity solutions and show that 
although the standard boundary-layer solution of Pohlhausen (1921) provides the 
leading-order approximation when the magnetic field is weak, i t  leads to an infinite 
pressure difference across the boundary layer. This is because the transverse pressure 
gradient is unable to entrain the fluid across the magnetic field lines; this is 
considered in detail in $2, To overcome this difficulty we show that a more 
complicated boundary-layer structure exists. In  $ 3  we find that there is an inner 
layer where the flow is represented at leading order by the standard boundary-layer 
solution. This flow is perturbed by the weak magnetic field. The inner-layer solution 
breaks down in the far field and indicates the existence of an inviscid outer layer. 
This is considered in 94, where we demonstrate that, owing to the singular nature of 
the differential equation for the similarity solution in this region, the flow must 
involve a discontinuity in the velocity a t  a finite distance from the plate. Beyond this 
free shear layer the fluid is quiescent. The presence of the magnetic field does not 
allow the fluid entrained by the hot rising flow in the inner layer to bc supplied from 
the far field with a predominantly horizontal velocity. Instead the fluid is supplied 
from the outer region with a predominantly downward flow. In  $5 we complete the 
matching process between the inner and outer layers as well as derive expressions for 
the Nusselt number. Finally in 96 we discuss the effect of viscosity on the free shear 
layer. 

2. Discussion 
Here we are concerned with the behaviour of an electrically conducting fluid which 

is heated from an isothermal vertical sidewall in the presence of a weak vertical 
magnetic field. The configuration is shown in figure 1. We assume that the magnetic 
Reynolds number of the system is negligible. Hence we can ignore the effect of the 
fluid flow on the magnetic field and so take the magnetic field to be fixed. We adopt 
the Boussinesq approximation ; thus the governing equations are 

( 2 . 1 ~ )  

(2.lb) 

(2 . lc ,d)  
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FIGURE 1. Configuration of the flow under consideration. A fluid of temperature T, is heated a t  a 
vertical wall to temperature T,+AT in the presence of a weak vertical magnetic field, B. The 
x-coordinate measures the distance from the bottom of the wall, and y is the horizontal distance 
from the wall. 

where the x- and y-components of the velocity are u and v respectively, p is the 
pressure and T the temperature. The physical constants are p the density, v the 
kinematic viscosity, K the thermal diffusivity, g gravity, a the coefficient of thermal 
expansion, B the magnetic inductance, and u the electrical conductivity. The 
boundary conditions on the flow and temperature are 

1 u = O ,  v = O ,  T=T,+AT a t  y=O,  

u , ~ + o ,  T+T, as y - f o ~ .  J 

We have taken the fluid to be isothermal far from the wall. This is an appropriate 
assumption for the Czochralski crystal growth technique. I n  this situation heat is 
supplied to  the crucible only through the vertical sidewalls. Since the crucible stands 
on what is effectively an insulator all the incoming heat must exit through the upper 
surface of the melt, primarily by conduction through the growing crystal or radiation 
from the free surface of the melt. This results in a central core of the melt being of 
almost uniform temperature and so we consider a uniform temperature far from the 
wall. This is borne out by the recent calculations of Sackinger, Brown & Derby 
(1988). 

In the standard boundary-layer solution of Pohlhausen (1921) for flow past a 
heated vertical wall with no magnetic field i t  is found that sufficiently far upstream 
the motions are almost parallel to  the wall and the derivatives with respect to 2 are 
smaller than those with respect to y. If the terms that are relatively small are 
neglected we obtain the boundary-layer approximation in which the pressure is 

n F L M  199 



220 0. S. Kerr and A .  A .  Wheeler 

uniform everywhere, and that the flow and temperature are described by the set of 
equations 

au au a2u au av aT aT a2T 
u-+v- = ga(T-T,)+v--, -+- = 0, u-+v- = K - .  (2.3u-c) ax ay ay2 ax ay ax ay ay2 

These equations have a similarity solution of the form 

The constants A ,  and qo are given by 

A, = (v2gaAT)i, q, = 

This reduces the governing equations (3) to the pair of ordinary differential 
equations 

t fo gi = Pr-l g,”, (2.8a, b )  

where the Prandtl number Pr = v / K .  The boundary conditions for this problem 
are 

and 

The solution of these equations has f, - a, as q+m, where a, is a constant 
dependent on the Prandtl number. This represents the entrainment of fluid that is 
required to  replace the fluid rising in the heated boundary layer adjacent to the 
plate. 

The boundary-layer approximation assumes that the flow is almost parallel to  the 
vertical wall. Since the magnetic field, through the Lorenz force, only affects fluid 
flow across the magnetic field lines, this implies that there will be a weak direct 
interaction between the vertical magnetic field and the flow in the boundary layer. 
However, as noted above, the classical boundary-layer solution has, for large 
distances from the wall, a component of velocity towards the wall proportional to 
d. If this boundary-layer solution holds in the case of the weak magnetic field then 
the full y-momentum equation, (2.1 b ) ,  gives that for large distances from the wall 

l a p  3uB2 
0 w ----A,x-~f(co). 

Pay  4P 
(2.10) 

Then assuming the pressure a t  the wall is uniform, we find 

p ( x ,  y) yx-;. (2.11) 

This implies that the pressure gradients become unbounded far away from the wall. 
This result is not physically possible and so the presence of a vertical magnetic field 
will disrupt the far-field flow. 

To find how the far-field flow adapts to a vertical field we assume that the vertical 
magnetic field is weak. The precise meaning of weak in this context will be quantified 
at the end of $4. If this is the case then the alteration to the flow far away from the 
wall will have a correspondingly weak effect on the flow near the wall, which will still 
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be predominantly a balance between the buoyancy forces and viscosity. The weak 
magnetic field will provide a regular perturbation upon the flow near the wall. This 
perturbation will be determined by the flow far from the wall in the region where the 
magnetic field is important. This distance of this region from the wall will also be 
quantified in $ 3 .  

The procedure we follow here is to find an asymptotic expansion for the flow and 
temperature near the wall in terms of a small parameter representing the strength of 
the weak magnetic field; this is done in $3. We shall refer to this as the inner layer. 
Next, in 94, the motions far from the wall (in what we shall henceforth refer to as the 
outer layer) are found and matched to the inner layer. In $5  this far-field flow is used 
to provide the boundary conditions required to solve the higher-order equations in 
the inner layer. Finally the effect of viscosity on the outer layer will be considered 
in $6. 

3. The inner layer 
In the inner region the y-momentum equation ( 2 . l b )  gives, in the boundary-layer 

approximation, that 
aP 
a Y  

0 = ---aB2v. 

For a sufficiently weak magnetic field the second term may be neglected and so in the 
inner layer the pressure is independent of y. However, we can no longer assume that 
outside this inner layer the pressure is also independent of x. Hence the boundary 
layer equations for the inner layer are 

(3.2b, c )  

We assume that the pressure term in ( 3 . 2 ~ )  is small and so the balances between the 
principal terms gives that the classical boundary-layer solution will provide the first 
approximation to the solution. Thus the stream function and temperature .are 

(3.3a, b )  

where fo and go denote the classical boundary-layer solution. We note that 

& ( T ) + O ,  g o ( q ) - f O  8s r+a .  (3.4) 

In order to further develop the solution in the inner layer we now briefly consider 
the situation in the outer layer. The expression (3.4) provides matching conditions 
for the outer layer and imply that it is isothermal. They also show that there is 
an entrainment at  the inner edge of the outer layer and in particular require that 
$ cc as y + 0 in the outer layer. Just as in the case of the inner layer, the flow in the 
outer layer is almost parallel to the wall for sufficiently large 5, and so the boundary- 
layer approximation that the derivatives with respect to x are negligible when 
compared to the derivatives with respect to y, and the assumption that u % v also 
hold. Thus the governing equations for the outer layer are 
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We look for similarity solutions of the form 

where a, p, A ,  and go are constants to be determined, and find that for large x the 
viscosity term becomes small compared to the inertial terms in the x-momentum 
equation and is neglected. The balance between the remaining terms and the 
entrainment condition of the inner layer require that 

a = $ ,  @=1 12' (3.7) 

Hence the appropriate similarity variable, denoted by 5, is defined by 

where 

( 3 . 8 ~ )  

(3.8b) 

From this we find, by integrating the y-momentum equation, that the pressure at  the 
wall, denoted by pwa,,, is 

= - r B z j o m g d y  = - P o @ ,  Pwall 

(3.9) 'I where 

and so pwa,, is proportional to d. I n  the inner-layer equations (3.2) i t  is the x- 
derivative of the wall pressure that appears. This is balanced by the nonlinear inertia 
terms, suggesting a perturbation parameter 6 of the form 

Po = + B 2 4  5 0  J: 4 5 )  d5, 

6 =  2 -- "6". (3.10) 

We have now determined the form of the perturbation representing the pressure 
gradient outside the inner layer and so are able to develop the asympt,otic solution 
in the inner layer where we look for solutions of the form 

$ = AOX~f(%O, T =  T,+ATg(r,t), (3.1 1 a, 6) 

where 
t 

90 = (&) , A ,  = (v2gaAT)a, to = (3.12) 

The boundary-layer equations (3.2) then give the following partial differential 
equations for f and g :  

~f,"-~f,,f-~6f,f,(+~6f~f,, = itz + g + f ? / , ,  ( 3 . 1 3 ~ )  

and -8 fg, -Kf ,g(+W<s,  = Pr-lg,,. (3.13b) 

From (3.8), (3.9) and (3.12) the value of 5 is proportional to &. We assume the 
magnetic field to be sufficiently weak that 6 is small. Thus we seek a solution in the 
limit [ + O  and hence put 

f ( 9 , t )  =fo(9)+t f l ( r l )+62f i (9)+o( t3) ,  ( 3 . 1 4 ~ )  

S(% 5) = 9o(~)+5g,(r)+EZgs,(r)+0(5"),  (3.14b) 
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where f,, and go represent the standard boundary-layer solution. The boundary 
conditions at the wall, = 0, are 

f i (0)  = f ; ( O )  = ga(0) = 0 for i 2 1, 

and the far field boundary conditions for gi are 

(3.15) 

g r ( 7 ) + 0  as 7+00 for i2 1.  (3.16) 

We also require that the f i  are well behaved as 7 +a. The precise meaning of this 
will be clarified later in this section. 

The expansions (3.14) are substituted into the boundary-layer equations (3.13). 
The O ( l o )  equations are the standard boundary-layer equations (2.8). The next two 
orders give the following pairs of equations : 

O(f;’) -“f”f 12 0 1 +yff 3 0 1 - a  f 0 f -  1 -g1+fT,  (3.174 

2 f g  3 1 1 -3f 4 091 ‘--f 1”2 19; = P r - ’ d ;  (3.17 b)  

W2) -‘f”f 12 0 2 + I f f - V  3 0 2 0 f”+’f’f’-Af”f 2 6 1 1 12 1 l=?!+g’Z+fr> ( 3 . 1 8 ~ )  

(3.18b) 

In each case g1 + 0 as 7 +a and so we examine these equations to find the large-7 
behaviour for each fi.  

-2f’g 3 0 2 - a  3f og2 ’-lf‘ 3 191 -Lf 12 191 ’-&f2g;=Pr-1gi. 

The O(&)-equations (3.17) show that 

-2f 4 0  7-f: 1 as ?+a. (3.19) 

This gives that fl-b,r]+al as 7;1+co. (3.20) 

Similarly, the 0(l2)-equations (3.18) give 

‘f’f’-3f 2 1 1 4 0 f-‘f’f’ 2 3 1 1-i+fI’ as 7 + a ,  (3.21) 

(b;-2)72+b27+u2 as 7+m. (3.22) 
1 

f 2  - - 
9a0 

and so 

1 
Thus f - a,+ b, &7+- (b: - 2 ) ( & ~ ) ~  + . .. as 7 +a. (3.23) 

In this expression terms of the form [PTQ with p > q have been ignored since they are 
not important when matching with the leading outer-layer solution. We note that 
this expansion breaks down when 75 = O(1). From (2.6), (3.8) and (3.10) g = O(f;q) 
and so we find that the asymptotic solution (3.23) breaks down on the lengthscale of 
the outer layer. 

The ordinary differential equations (3.17) and (3.18) can be solved numerically 
using standard techniques. However the value of b, required for the far-field 
boundary conditions for fl and fi can only be found by matching the inner layer onto 
the outer layer. This, combined with the breakdown of the asymptotic solution (3.14) 
on the lengthscale of the outer layer, leads us to now consider the outer layer in more 
detail. 

9a0 
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4. The outer layer 
In the outer layer the stream function is represented by the similarity form (3.6) 

in which case we find that the effect of viscosity is negligible at  leading order. We 
formalize this by seeking a solution of the form 

h = ho(5)+5h,(5)+0(52) as 5 + a ,  (4.1) 

(4.2) 

in which case the governing equations (3.5) give 

-St h - a h  h = Ah - 2 C h  
1 2  0 0 4 0 0 16 0 144 0 144Ph;, 

at leading order. 
The main function of the outer layer is to overcome the infinite pressure gradients 

that would otherwise arise in the inner layer. Thus ha has to decay sufficiently rapidly 
for the pressure difference across the outer layer to be finite. Hence from (3.9) we 
require that 

(4.3) 

At the inner edge of the outer layer the solution must match with the lage-7 form of 
the inner-layer solution. The large-7 behaviour of the inner-layer stream function is 
given from (3.3) and (3.23) by 

IJY h a m  a/ .c 00. 

For the outer layer, the small-5 behaviour is given by 

9 = A l x ~ ( h o ( 0 ) + h ~ ( O ) ~ + ~ h ~ ( O ) ~ +  ...). 

We note that from (2.7), (3.8) and (3.12) 6, 7 and 5 are related by 

where 

We can expand H as an asymptotic series in 6 to obtain 

H = H 0 + f ; H 1 + 5 2 H 2 + . . . ,  

H$ = /omh,(ndS, i = 0,1,2 ,... . where 

We now match the inner and outer layers up to 0(6'%,J) and find that 

Aoao = A,h,(O), b, 

-- A' ( 7 ) ( b i - 2 )  = fh:(O). 
9aoAo 

(4-4) 

(4.5) 

( 4 . 6 ~ )  

(4.6b) 

(4.7u) 

(4.7b) 

(4.8a, b) 

( 4 . 8 ~ )  

Equation ( 4 . 8 ~ )  determines the scaling of the stream function in the outer layer, and 
so without loss of generality is satisfied by A, = aoAo and h,(O) = 1. However (4.8b) 
does not explicitly determine hh(0) as b,  is unknown a t  this stage. The final matching 
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condition ( 4 . 8 ~ )  also involves b, and so may be combined with (4.8b) to give the 
following expression for ha : 

h;(O)'-;hh;(O) = 1: h,(C;) dC;. (4.9) 

However this condition can also be obtained by integrating (4.2) over the interval 
0 < C; < 00, and so this gives no new conditions for the outer-layer solution. 

So far we have only matched to O(tZ ) .  To match any more terms the higher-order 
behaviour in both layers would also have to be included, particularly the viscosity in 
the outer layer. To leading order this is not important for the bulk flow in the outer 
layer. By matching up to O([2q2) we have ensured the continuity of both velocity 
components and vorticity between the inner and outer layers. 

We now consider the behaviour of ha as [+coo. Examination of (4 .2)  shows that 
either h, is unbounded as c+co or h,(C;) = 0 for sufficiently large values of C;. The 
former would imply an infinite velocity far away from the wall and so is unphysical. 
Although h,([)  0 is a solution to (4.2) for all 5, it  does not satisfy the boundary 
condition h,(O) = 1. However, the highest derivative of h, is the third-order term 
which is multiplied by h,. This implies that as ha --f 0 the behaviour of h, will become 
more singular. This allows the possibility that ha becomes zero a t  some finite value 
of c, say f;*, and then remains identically zero for larger values of C;. We now look 
for solutions such that h, = 0 for [ > [*. Then h,(C;) remains to be determined on 
0 < C; < C;* along with the unknown position c*. Thus we have a free boundary 
problem for h,(g) and C;* which satisfies the third-order differential equation (4.2) and 
so we require four boundary conditions. We have so far only determined two, that 
h,(O) = 1 and h,(f;*) = 0. The other two boundary conditions are found from 
consideration of the singular behaviour of ha in the neighbourhood of [ = f;*. The 
third condition is found from a jump condition at C; = f;*. To determine this (4.2) is 
integrated over the interval [ C ; * - E ,  C ; * + E ]  to obtain 

We now take the limit s+O, and noting that ha is continuous and ha( [*+€)  = 0, 
equation (4.10) gives 

L(h'(C;*- 6 0  ))"y&,(C;*-)h;;(f;*-) = -&c*";(C;*-). (4.1 1) 

The asymptotic form of h, near [* is given in the Appendix. From this we find that 
in general hh;( [*-~)  = O(s-f), which would imply that the vorticity is in general 
unbounded as g-t c*- . However this analysis also indicates that there is also a 
solution for which hl remains bounded. It is this behaviour, with bounded vorticity 
in the neighbourhood of c*, that is imposed as the last boundary condition. The reason 
for imposing this condition will be addressed in more detail in $6. The free-boundary 
problem for (ho(c) ,  C;*) is 

-Ah' 12 0 h," 0 -ah 4 0 h"' 0 = Ah 16 0 - L [ h '  144 0 - ACLch," 144 0 ,  (4 .12a)  

with boundary conditions 
ho(0) = 1 

and ho(C;*) = 0, hh(C;*) = -BC;*', hh;([*) = &C;*. (4.12b) 

We have solved this numerically. Because of the singular nature of the solution 
near C;* it was not possible to integrate numerically the solution all the way to or from 
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FIGURE 2.  Graph of h, as a function of [. The curve meets the [-axis at [* (= 0.780290) after 
which h,([)  E 0. 

I I I , I 

the singular point. To overcome this problem the asymptotic form of the solution 
near 6* with h,” bounded was used. This enabled (4.2) to be integrated away from near 
the singular point. The solution is shown in figure 2. 

The solution in the outer layer is composed of two distinct regions [0,<*] and 
([*, 00). I n  the latter region h, = 0 and the fluid is stationary, we shall refer to i t  as 
the quiescent region. Thus the effect of the magnetic field is to cause the fluid to be 
entrained into the inner boundary layer only from a region close to the wall. The flow 
is confined as the magnetic field blocks fluid motion across the field lines in the far 
field. This contrasts with the situation in the absence ofa  magnetic field in which the 
boundary layer entrains fluid from the whole region. The whole flow is shown 
schematically in figure 3.  

The solution h,(c) has a discontinuity in its first derivative, and so the velocity of 
the fluid at  c = c* is discontinuous. Thus a free shcar layer will occur a t  6 = c* near 
which viscosity will be important. This is considered in $6. 

At this point we can now quantify the statement ‘a  weak magnetic field’, In  the 
inner layer we require that 6 is small. There is also the requirement that the 
horizontal lengthscale of the outer layer is much larger than the horizontal lengthscale 
of the inner layer. From (4.6) these two requirements are equivalent. The value of 5 
at a height x above the bottom edge of the sidewall is given by 

(4.13) 

where H ,  = 0.3856. The only remaining term in this expression that is not explicitly 
given or is a physical parameter is f,,( 00). This quantity is a function of the Prandtl 
number only. 
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FIGURE 3. Schematic diagram of the flow showing the three regions; the inner layer, the outer 
layer, and the quiescent region. 

5. The effect of the magnetic field on the inner layer 
Having found the outer-layer solution we now have the boundary conditions for 

the perturbations f ,  and f, of the inner-layer solutions. From the matching condition 
(4 .8b)  between the inner and outer layers, and (3.20) and (3.22) we obtain 

and 

(5 .1~)  

(5 . lb)  

This provides the remaining boundary condition for the differential equation (3.17). 
However (5.1 b )  is equivalent to  the condition that g, + 0 as 7 +a. I n  order to  obtain 
the extra boundary condition required to uniquely define fi and g2 we need to  find 
the higher-order behaviour of h. This higher-order behaviour includes the effect of 
viscosity and will be returned to  in $6. We have solved (3.17) to obtainf, and g1 using 
standard methods. Some results are shown in figure 4 for Prandtl numbers 0.01, 1.0 
and 100.0. I n  the standard boundary-layer solution the temperature profile is the 
result of the balance between diffusion of heat away from the wall, and the advection 
of heat towards the wall by the entrained fluid. I n  each case the graph of gl(q) has 
an initial positive gradient. The graphs then rise to a peak and decay away in a 
similar fashion to go, but further away from the wall. Adding this to go would have 
the effect of reducing the temperature gradient a t  the wall, and of increasing the 
depth of penetration of the heat from the wall. This is to be expected as the effect of 
the magnetic field is to oppose the entrainment. The graphs of fl are small near 
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FIQURE 4(a). For caption see page 230. 

the wall, gradually changing to the constant gradient required from the matching 
with the outer-layer solution. 

Of interest in practical applications is the effect of the vertical magnetic field on 
the heat flux a t  the wall. We define the Nusselt number, Nu, to be the ratio of the 
total heat flux from a wall of a given height in the presence of a magnetic field to the 
heat flux when there is no magnetic field: 
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FIGURE a@). For caption see page 230. 

But from (3.14b), (2.6) and (3.10) 

Hence, by integration with respect to  x, 
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FIGURE 4. Graphs off,, f,, go and g1 as functions of 7 for Prandtl numbers (a )  0.01, ( b )  1.0, and 

11 

(c) 100.0. 

where lL is 6 evaluated a t  the given height on the sidewall. The coefficient of cL is 
shown graphically in figure 5 as a function of the Prandtl number. As is to be 
expected, the inhibiting effect of the magnetic field upon the flow reduces the heat 
flux and, hence, decreases the Nusselt number. This is seen by the negative coefficient 

From the definition of 5, (4.13), there is a dependency on fo( a). This is the only 
quantity that is not a physical parameter of the system. The dependency of the 
perturbation to the Nusselt number on fo(co) can be removed by considering the 
Nusselt number expressed as a Taylor series in &to( a)-). The dependency of the first- 
order term in this series on the Prandtl number is shown in figure 6. 

o f f .  
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FIQURE 5. Graph of the leading-order perturbation to the Nusselt number, Nu,, when the Nusselt 
number is expressed as a power series in 6,. Nu, is given for Prandtl numbers between 0.01 and 
100. 
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FIQURE 6. Graph of the leading-order perturbation to the Nusselt number, Nu,, when the Nusselt 
number is expressed as a power series in 6, fo(co) -S .  This removes the dependency of the 
perturbation parameter on fo(m). Nu, is given for Prandtl numbers between 0.01 and 100. 
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6. The effect of viscosity in the outer layer 
In $4 a solution to the flow in the outer layer was found that had a discontinuity 

in the velocity away from the wall. This discontinuity represents a free shear layer. 
In the analysis that leads to this solution it was assumed that the effect of viscosity 
was negligible throughout the outer layer. However this will not be the case near the 
shear layer, and so we now look at  this region in more detail. 

The width of the outer layer is proportional to xh while the total downwards flux 
of fluid in this region is proportional to xi, and so the average downwards velocity in 
the outer region is proportional to xi. The velocity in this layer is almost uniform and 
so the jump in velocity at  the free shear layer will also be proportional to xi. Thus 
the downflow on the wall side of the free shear layer is decelerating, and will have 
streamlines that diverge from the shear layer. This precludes the possibility of a 
steady state that is similar to the form of the solution found in $4  occurring almost 
everywhere, except in a small region near the shear layer. This form could only be 
achieved if the diffusion of vorticity away from the shear layer is balanced by 
advection towards the shear layer, as in the case of stagnation-point flow towards a 
rigid wall (see, for example, Batchelor 1967). However, this is not the case here, and 
the effect of the viscosity may well be apparent throughout the outer layer. This 
problem arises because of the infinite extent of the fluid under consideration. In 
practical applications the heated surface is finite in length. In which case, depending 
on the situation at the top of the heated surface, there may be a mechanism that 
allows the possibility of a downflow that is of the kind found in $4. If this is the case 
then the effect of viscosity will again be negligible in all but the immediate vicinity 
of the free shear layer. In this section we shall consider how the flow near the shear 
layer would evolve in such a situation. 

We seek a solution to (3.5) where the stream function is of the form 

where y is as before and %is defined by 

(6.2a, b )  

This definition of %differs from that o f f  by a factor of (%a);. This leads to some 
simplification in the consideration of the shear layer. 

When (6.1) is substituted into the governing equations (3.5) we obtain 

- &h{ h, - &<{ h - h&{ - hf h<{<) 
- 

= A h - 1  16 1 4 4 5 h 5 - ~ h 5 5 + ~ ~ h ~ - g ~ ~ h [ j t d - ~ ~ h ~ +  chch,555, (6.3) 

We are concerned here with the case where the outer-layer solution, ha([), is imposed 
at  some level up the wall where %is small, say g*. It is convenient to change variables 
so that [is replaced by 8, where 

In this case (6.3) becomes 
g= ee, (6.4) 
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with the inviscid free solution, h,({) ,  imposed at 0 = 6* ( = log, p). We now look a t  
the evolution of the flow in the region near the level of the shear-layer solution by 
rescaling 5 and h to give 

e* x = c- {*, e@ h* = h, (6.6) 

where E* is the location of the shear layer. If these are substituted into (6.5) and all 
but the lowest-order terms are ignored, the governing equation for the evolution of 
the shear layer is 

-Ph*h* 12 x x x  -3h* 4 xxx h*-l(h*h* 3 x exx -h*h* 8 xxx ) = -*5*2h* 144 xx +e*-@’h* X X X X ’  (6.7) 

For solutions near 6 = 6* we assume that ee-** x 1. Equation (6.7) can be integrated 
once with respect to x to give 

(6.8) Lh*h*-Hh* 6 x x 4 x y  h*--l(h*h* 3 x Ox -h*h* 6 ,yx) = - % c * 2 h , * + h , * j x + D ( e ) ~  

where D(0) is an arbitrary function of 6. The boundary conditions on h* for large 1x1 
are 

h*+O as x+m,  ( 6 . 9 ~ )  

and h* - -S *2 x + o ( l )  as x+-m.  (6.9b) 

The o( 1)-term in the second boundary condition (6.9b) is required in order to locate the 
solution at the origin as (6.8) is translationally invariant with respect to x. Both of 
these conditions require that D(0) =_ 0. For solutions to (6.8) that are valid for small 
8-6* we can find a similarity solution of the form 

h* = (6-0*)ik(p,) ,  where p, = X 
(0 - 8*)t * (6.10) 

If we expand k as an asymptotic series in (8-0*); and substitute the series into (6.8) 
we obtain the leading-order equation for k, 

k r  = L v k  
6 0 0 ,  

with boundary conditions 

and 

(6.1 1) 

(6.12) 

The solution to this is shown in figure 7. It can be shown that k, approaches the linear 
asymptote super-exponentially for large negative Q, and that k, approaches zero as 
- 18 97-l for large positive 97. These features are reflected in figure 7. 

The next-order equation for k,(V) allows solutions that, for large negative values 
of p?, behave as 

k,(Q,) - Ap?2+B. (6.13) 

This behaviour can only be matched onto the asymptotic form of h, near to {* if 
h,” remains bounded. For this reason the condition that the vorticity remains 
bounded in the limit c+c*- was imposed in $4. 

A similar approach to the examination of the shear layer can be applied to the 
investigation of higher-order approximations to h({) .  Because of the lack of a global 
solution for h if viscosity is retained, a similar local approach must again be used. 
However the results yielded will be dependent on the particular situation at the top 
of the wall. This cannot be treated in a general way and so is outside the scope of this 
paper. 
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FIGURE 7 .  Graph of k, against q, showing the form of the similarity solution for the spatial 
evolution of the shear layer in the presence of viscosity. 

7. Conclusions 
In this paper we have investigated how a weak vertical magnetic field interacts 

with a boundary-layer flow past a heated vertical wall. We have shown that the 
effect of the magnetic field is to  inhibit the entrainment of fluid into the boundary 
layer from regions far from the wall, but instead limits the entrainment to a region 
of thickness proportional to B-f. The similarity solution found for this outer layer 
involves a free shear layer. This causes the assumption that the outer layer is 
effectively inviscid to break down in the neighbourhood of the shear layer. This 
breakdown is important globally if the fluid region is infinite ; however if the fluid is 
finite in extent, and the model is applied to  a finite region then the leading-order 
behaviour found in this paper is appropriate. Higher-order behaviour would have to 
be investigated in the context of the particular physical situation under consideration 
and cannot be addressed by the general approach adopted here. 

This work has been motivated by the desire to understand some of the details of 
the melt motion in the Czochralski crystal growing technique, albeit through the 
study of a much simplified model. Unfortunately we can offer no experimental 
comparison for the work presented here. For the Czochralski crystal growth system 
the assumption of a uniform temperature T, may be justfied; however in the 
experimental work of Seki et al. (1979) it may not be appropriate. Their experiments 
consisted of a rectangular cavity with a cooled vertical wall opposite the heated wall. 
Hence i t  is likely that the interior of the fluid will be thermally stratified (cf. Gill 
1966) and our theory is not strictly appropriate. However our work is more relevant 
to their experiments than that of Sparrow & Cess (1961) with which they compared 
their experimental results. In  their analysis Sparrow & Cess considered a weak 
horizontal field rather than the vertical field employed in the experiments. 

Finally we note that the solution presented here is valid only for large x, in the 
same way as the Pohlhausen boundary-layer solution. For parameters relevant to 
the Czochralski growth of silicon the two-region structure described above breaks 
down on the same lengthscale as the Pohlhausen solution. 

The first author would like to acknowledge the financial support of the Science and 
Engineering Research Council in this work. 
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Appendix. Solution to h($ near [* 

5 to 
To find the general solution of (4:2) near 6 = 6* it is convenient to transform h and 

cC= c*-c, €5 = h,. (A 1) 

L E h + f h " ' h  i a  = ~ 2 h + ~ ( 5 * - ~ c ) E - ~ ( 5 * - e c ) 2 h .  (A 2) 

Then (4.2) becomes 

We now require that h = 0 for all c> 0. If we look for solutions near to the origin, 
e small, we get the O(1) equation for E 

(A 3) A h h  + aph - ;!4y*2 h" 12 

This can be integrated once to give 

(A 4) 

where A is a constant. However the jump condition (4.11), when resealed, gives 
A = 0. We now multiply (A 4) by h-y and integrate the equation once more to 

(A 5 )  
obtain 

This can be integrated to give c i n  terms of h for 6 > 0 and c> 0;  three cases arise 

- & f ~ + ~ h ~  = -a0 *2- 
1445 h + A ,  

- 
h' = 48c*2 +Chi. 24 

(iii) C = 0 

In both the cases with C + 0, h"(0 = O(r-a) as [ + O + .  The last case, C = 0, can be 
found more accurately by looking for a power-series solution of the form 

h(0 = ac+ebp+e%P+ ... . (A 8) 

This is substituted into (A 2) and like powers of e are equated. With the application 
of the jump condition, the first three coefficients are found to be 
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